

Job ref

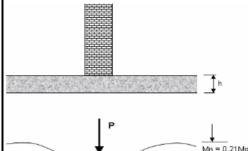
Project Subject Slab-on-grade design Page Calc. By WY Check by File ref. Steel Fibre Reinforced Concrete Slab On Grade Design	
Calc. By WY Check by File ref. Calculation Re	
Calculation	
Steel Fibre Reinforced Concrete Slab On Grade Design	emarks
Design info:	
SLAB LAYOUT Total Width of the Floor: B = m	
Total Length of the Floor: L =m	
CONCRETE Concrete density: ρ_c = 24 kN/m3	
Characteristic cube compressive strength: f _{cu} = 30 N/mm ²	
Characteristic cylinder compressive strength: f _{ck} = 24 N/mm2	
Mean cylinder compressive strength: f _{cm} = 32 N/mm2	
Mean axial tensile strength: $f_{ctm} = 2.5 \text{ N/mm}^2$	
Characteristic 5% fractile axial tensile strength: $f_{cttm} = 2.3 \text{ N/mm/2}$	
•	
, , , , , , ,	
Concrete Poisson's Ratio : $v = \frac{0.15}{(0.15 \sim 0.2)}$	
Slab Thickness : h = <u>150</u> mm	
Characteristic flexural strength of plain concrete: $f_{ctk,fl}^*$ = 3.41 N/mm2	
*The value has taken into account of shrinkage effect. Distance Between Shrinkage Joints: Ls = 6 m (5~12m, 0 for	
Jointless Floor)	
Note: For jointed floor, bays for joints side length ratio range from 1 to 1.5, side length = $5m \sim 12m$.	
For jointless floor, bays for "expansion joints" side length ratio: 1~1.5, max. side length = 45m. Both jointed and jointless floor require "isolation joint"(1~2.5cm) to separate from other structures.	
FIBRE Fibre type : STAHLCON HE 0.75/60	
Fibre dosage: 20 kg/m3	
Equivalent flexural ratio: R _{e3} = 52 %	
2-70	
SOIL California Bearing Ratio: CBR = 5 %	
Westergaard Modulus of Subgrade Reaction: $k = 0.039 \text{ N/mm}^3$	
(min. k value for jointed floor is 0.03N/mm3; for jointless floor is 0.05N/mm3)	
SOIL-CONCRETE	
soil-concrete friction parameter : c = 1.0	
Radius of Relative Stiffness: I = 693 mm	
MATERIAL SAFETY FACTOR	
Safety Factor for steel bars: $\gamma_{st} = \frac{1.15}{1.15}$	
LOAD SAFETY FACTOR	
Static Load Safety Factor: $\gamma_s = 1.5$	
Number of Load Repetition: N = 500000	
Dynamic Load Safety Factor: $\gamma_d = 2.0$	
LOADING	
1) Uniform Load Applied Uniform Distributed Load (UDL): q = 30 kN/m2	
Load Safety Factor for UDL: $\gamma_q = \frac{30}{1.5}$	
2) Line Load	
Applied Line Load : P _{lin} = 10 kN/m	
file and the second	
Load Safety Factor for Line Load : $\gamma_p = \frac{1.5}{}$	
3) Point Loads	
3) Point Loads Fork-Lift Operational Capacity: W ₁ = 5 Tons	
Fork-Lift Operational Capacity: $W_1 = 5$ Tons Numbers of aisles: $Na_1 = 2$ nos.	
Fork-Lift Operational Capacity: $W_1 = 5$ Tons Numbers of aisles: $Na_1 = 2$ nos. Numbers of wheels per aisle: $N_1 = 4$ nos.	
Fork-Lift Operational Capacity: $W_1 = 5$ Tons Numbers of aisles: $Na_1 = 2$ nos.	

 B_{wm1}

600 mm

Closest wheel to wheel distance :

	Client						Job ref
	Project						Date
	TIMURAN Subject Slab	o-on-grade d	lesign				Page
	Calc. By WY			C	Check by		File ref.
Ref	jedio. By Wi	Calcu	lation		THOOK BY		Remarks
1101	Contact width per		b ₁	=	150 mm		Nomento
	Contact length per		t_1	= _	30 mm	_ (·)
	Contact radius per		a_1	=	37.85 mm		
	Contact pressure per	wheel:	p_1	=	1.39 N/mm2		
	Truck Load Ca	apacity:	W_2	=	50 Tons	$\overline{}$	
	Numbers of		Na ₂	= -	8 nos.		
	Numbers of wheels pe	er aisle :	N_2	= _	4 nos.		
	Aisle width along moving dir	rection:	B_{aa2}	= -	600 mm		
	Aisle width perpendicular to moving dir	rection:	B_{ap2}	=	2400 mm		
	Closest wheel to wheel dis	stance :	B_{wm2}	= _	250 mm		
	Contact width per	wheel:	b_2	= _	200 mm		
	Contact length per	wheel:	t_2	= _	40 mm		
	Contact radius per	wheel:	a_2	=	50.46 mm		
	Contact pressure per	wheel:	p_2	= 4	1.95 N/mm2		
	Other concentrated loads : Point L	Load 3 :	W_3	=	20 kN		
		t width :	b_3	_ =	150 mm		
	Contact	length:	t ₃		150 mm		
	Contact	radius :	a_3	-	84.63 mm		
	Contact pre	essure :	p ₃		0.89 N/mm2		
	Distance(eg. between rack legs at "back-to-ba	ok" arrange	omant) :	0	= 100 m	m	
	Distance(eg. between fack legs at back-to-ba	ick allalige	emem).	D_3	= 100	1111	
	<u>ANALYSIS</u>						
TR34, 2003	General moment capacity per m width of a plain	concrete se	ection:	•			
Chapter 9							
	$M \qquad = \qquad (f_{ctk},$	_{,fl} /γ _c)(h²/6)	Las (as				
	=	8.54 kN	WH/III				
	Positive bending moment capacity per m width o	of steel-fibre	e-reinforc	ed concrete:			
	$M_p = (f_{ctk},$	_{,fl} /γ _c) R _{e3} (h ²	² /6)				
	= (************************************	4.44 kN					
	No. and the second seco						
	Negative bending moment capacity per m width	oi steel-libi	re-reinior	cea concrete) .		
	$M_n = (f_{ctk},$	$_{,fl}/\gamma_{c})(h^{2}/6)$					
	_ V =	8.54 kN	lm/m				
	a)"Uniformly Load Capacity"						
		π					
		2λ	-				
		9					
	_	 	↓				
			<.	h			
		a* ///	//////				
		π		π_			
	A 2	2λ	+=	λ			
		h	\Box	q			
	<u> </u>			,,,,,,,	Ţn		
-				11/1///			
	According to Hetényi's work that based on elastic						
	sagging moment is caused by a patch load of bro moment is caused by two patch loads of breadth						
	that shall arise at point b.						
			_				


Ref

Client			Job ref
Project			Date
Subject	Slab-on-grade design		Page
Calc By	WY	Check by	File ref

Calculation

Thus, uniform load capacity per unit area,
$$w = (1/0.168) \, \lambda^2 \, M$$

$$= 53.51 \, kN/m2 > q \quad (30 \, kN/m2)$$
 (In practice, γ_q is not required since γ_c has been accounted for here)

b)"Linear Load Capacity"

Hetényi's elastic analysis determined that the distribution of bending moment induced by a line load applied to a slab is as shown, with $M_n=0.21M_p$

Load capacity per unit length of slab,

OK!

Remarks

OK!

c)"Concentrated loads"

i) Single Point Loads:

Technical Report TR34 adopts the design equations given by Meyerhof's plastic analysis for point loads on slabon-ground. However, Meyerhof's method is not explicit in dealing with values of a/l < 0.2; this setback has been resolved by linear interpolating the results for values of a/l equal to 0 and 0.2

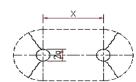
For an internal load: when a/l=0, $P_{iu}=2\pi \left(M_p+M_n\right)$

when $a/l \ge 0.2$, $P_{iu} = 4\pi (M_p + M_n)/[1-a/(3l)]$

For a free edge load: when a/l = 0, $P_{eu} = \pi (M_p + M_n)/2 + 2M_n$

when a/l ≥ 0.2, $P_{eu} = [\pi (M_0 + M_0) + 4M_0]/[1-2a/(3I)]$

For a free corner load: when a/l = 0, $P_{cu} = 2 M_n$


when $a/l \ge 0.2$, $P_{cu} = 4 M_n/[1-(a/l)]$

In calculating the edge and corner load capacities, it is assumed that there is no load transfer between slabs. If load transfer mechanism is present,

the calculated free corner load capacity can be increased by dividing
,and the calculated free edge load capacity can be increased by dividing
0.7
0.85

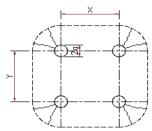
Hence, is load transfer mechanism present? 1: yes 2: no 1

ii) Dual Point Loads:

If the centre line spacing, x between two point loads is lesser than 2h (h = thickness of slab), Technical Report TR34 suggests that the loads shall be checked base on simplified approach similar to the method for single point load; or else, the following method shall be adopted to check their combined effects.

Client			Job ref
Project			Date
Subject	Slab-on-grade design		Page
Calc By	WY	Check by	File ref

Ref Calculation Remarks


For internal loads: when a/l = 0, $P_{i2u} = [2\pi + (1.8x/l)] (M_p + M_n)$

when $a/l \ge 0.2$, $P_{i2u} = \{4\pi/[1-a/(3l)] + 1.8x/[l-(a/2)]\} (M_p + M_n)$

For free edge loads: $P_{e2u} = 0.5*P_{i2u}$

iii) Quadruple Point Loads:

min (F

If the centre line spacing, x between two point loads in a row and centre line spacing, y between adjacent point loads in a column are both lesser than 2h (h = thickness of slab), Technical Report TR34 suggests that the quadruple point loads shall be checked for their combined effects.

For internal loads: when a/l = 0, $P_{i4u} = \{2\pi + [1.8(x+y)/l]\} (M_p + M_n)$

when $a/l \ge 0.2$, $P_{i4u} = \frac{4\pi/[1-a/(3l)] + 1.8(x+y)/[1-(a/2)]}{(M_p + M_n)}$

For free edge loads: P_{e4u} = 0.5*P_{i4u}

The above collapse load computed shall be compared against the sum of each single collapse load and also the sum of each dual collapse load; the lesser value shall be adopted.

LOAD CAPACITY CHECK FOR SINGLE LOAD								
L	OAD CAPACITY CHE	K FOR SINGLE LOAL)					
	Load 1	Load 2	Load 3					
Load per wheel,P(kN)	6.25	15.63	20					
Load safety factor, γ	2.0	2.0	1.50					
$P_u = \gamma P (kN)$	12.50	31.25	30.00					
When $a/l = 0$:								
P _{iu,0} (kN)	81.53	81.53	81.53					
P _{eu,0} (kN)	37.45	37.45	37.45					
P _{cu,0} (kN)	17.07	17.07	17.07					
When $a/l = 0.2$:								
P _{iu,0.2} (kN)	174.70	174.70	174.70					
P _{eu,0.2} (kN)	86.43	86.43	86.43					
P _{cu,0.2} (kN)	42.68	42.68	42.68					
contact radius,a(mm)	37.85	50.46	84.63					
a/l	0.0546	0.0728	0.1221					
Load capacity (kN):								
Internal P _{iu}	106.97	115.45	138.41					
Edge P _{eu}	59.80	65.04	79.25					
Corner P _{cu}	34.38	37.71	46.73					
$_{u}, P_{eu}, P_{cu}) > P_{u}, OK?$	OK!	OK!	OK!					

OK!

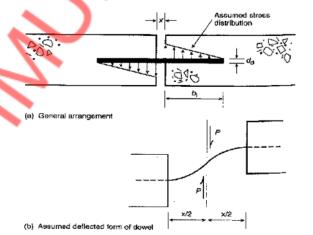
min

Client			Job ref
Project			Date
Subject	Slab-on-grade design		Page
Calc. By	WY	Check by	File ref.

Ref Calculation Remarks

L	LOAD CAPACITY CHECK FOR DUAL LOADS								
	Comb 1	Comb 2	Comb 3	Comb 4	Comb 5	Comb 6			
	Load 1 &	Load 2 &	Load 3 &	Load 1 &	Load 1 &	Load 2 &			
	Load 1	Load 2	Load 3	Load 2	Load 3	Load 3			
Dual Load, P _{2u} (kN)	25.00	62.50	60.00	43.75	42.50	61.25			
Distance, x (mm)	100	100	100	100	100	100			
Contact area, A(mm²)	12,069	18,093	39,426	15,081	25,748	28,759			
When $a/l = 0$:									
P _{i2u,0} (kN)	81.53	81.53	81.53	81.53	81.53	81.53			
P _{e2u,0} (kN)	37.45	37.45	37.45	37.45 37.45		37.45			
When a/I = 0.2:						Ź			
P _{i2u,0.2} (kN)	168.06	169.23	172.34	168.67	170.47	170.92			
P _{e2u,0.2} (kN)	79.66	80.81	83.96	80.26	82.05	82.50			
contact radius,a(mm)	37.85	50.46	84.63	37.85	37.85	50.46			
equivalent radius,a _{eq} (mm)	61.98	75.89	112.02	69.29	90.53	95.68			
a/l	0.0546	0.0728	0.1221	0.0546	0.0546	0.0728			
a _{eq} /I	0.0894	0.1095	0.1617	0.1000	0.1306	0.1381			
Load capacity (kN):				•	1				
Internal P _{i2u}	120.22	129.54	154.92	125.09	139.62	143.23			
Edge P _{e2u}	66.27	71.99	88.28	69.24	78.34	80.65			
$(P_{i2u}, P_{e2u}) > P_{2u}, OK?$	OK!	OK!	OK!	OK!	OK!	OK!			

LOA	LOAD CAPACITY CHECK FOR QUADRUPLE LOADS								
	2 x Comb	2 x Comb	2 x Comb	2 x Comb	2 x Comb	2 x Comb			
	1	2	3	4	5	6			
Load, P _{4u} (kN)	50.00	125.00	120.00	87.50	85.00	122.50			
Distance, x (mm)	300	300	300	300	300	300			
Distance, y (mm)	600	600	600	600	600	600			
Contact area, A(mm ²)	252,625	278,833	354,831	265,729	303,728	316,832			
When $a/l = 0$:									
P _{i4u,0} (kN)	111.86	111.86	111.86	111.86	111.86	111.86			
P _{e4u,0} (kN)	55.93	55.93	55.93	55.93	55.93	55.93			
When $a/l = 0.2$:		>							
P _{i4u,0.2} (kN)	197.26	198.58	202.27	197.26	197.26	198.58			
P _{e4u,0.2} (kN)	98.63	99.29	101.14	98.63	98.63	99.29			
contact radius,a(mm)	37.85	50.46	84.63	37.85	37.85	50.46			
a/l	0.0546	0.0728	0.1221	0.0546	0.0546	0.0728			
Load capacity (kN):	Į	Ì							
Internal P _{i4u}		-	-	-	-	-			
Edge P _{e4u}		-	-	-	-	-			
$(P_{i4u}, P_{e4u}) > P_{4u}, OK?$		-	•	-	-	-			

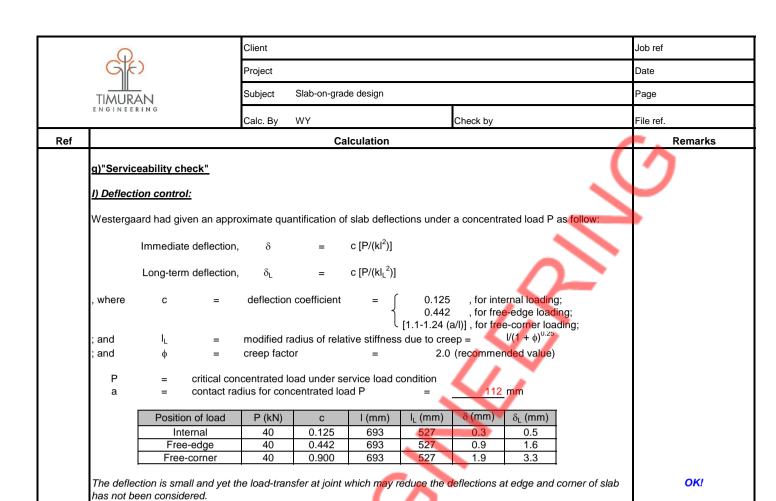

Not required as x or y > 2h

OK!

d)"Load Transfer at Joint"

TR34, 2003 Sec 9.10

Load transfer at joint is simplified by considering quantitative dowel bar actions only, other methods such as aggregate interlock and steel fibre pull-out resistance at joints are disregard here.


d_d = diameter of dowel bar (mm)

 b_1 = effective bearing length (mm) ($\leq 8 \times d_d$ for design purpose)

Project Subject	Slab-on-grade design	Date Page	
,			raye

	G(E)	Project						Date
	IIL_ TIMURAN	Subject Slab-on-gra	ade design					Page
	ENGINEERING	Calc. By WY			Check by			File ref.
Ref		C	alculation					Remarks
	Shear capacity per do Bearing capacity per do	T16 @ of bar, A = = 0.9 x A = el bar, f_y = of dowel, Z_p = opening, x = wel, P_{sh} = dowel, P_{bear} = dowel, P_{bend} = ar and bending, the load ormula:	300 201.06 180.96 250 682.67 10 0.6 f _y 0.5 f _{cu} b	mm ² mm ² N/mm ² mm ³ mm A_v / γ_{st} $\rho_1 d_d / \gamma_c$ $\rho_1 (x \gamma_{st})$	= = = lowel, P _{app} 1.4 18.4	/	kN kN	9
	In this case, load-trans	sfer capacity per dowel	I, P _{app}	7	18.4	· kN		
	Corresponding max. allowab	ole transfer load per un g maximum load transf			•	kN/m		(15% load transfer at edge of slab)
				<	61.4	kN/m		OK!
	Maximum load per do	wel (kN) to avoid burst	ing (punching	g of slabs):				
	Dowel diameter (mm)	100 105		ab thicknes		225	250	
	10	100 125 6.0 12.5	150 19.1	175 25.1	200 32.1	225 38.6	250 45.2	
	12 16	7.7 14.5 9.0 16.2	21.3	27.7 30.2	35.0 37.8	41.8 45.0	48.6 52.2	
	20	10.5 18.0	25.6	32.7	40.7	48.2	55.7	
	In this case, bursting f	\leftarrow	= .	19.1	_kN	> (total	2.8 kN force per dowel)	OK!
	Maximum allowable shear st , where $f_c{}'=$ concrete cylinder	compressive strength			N/mm2			
	Thus,	γ_c = safety factor for v_{max} = 4.34	6(1-f _c '/250) = or concrete = 4 N/mm2	0.54 1.5				
	Max. shear stress at the face of $v_f = (V/p)_m$, where $p = contact$ perimeter of k . f) "Punching shear check"	$_{ax}/(0.75h) = 1.06$	6 N/mm2	<	4.34	N/mm2		OK!
	Equivalent Flexural Ratio, R _{e,3} =	52 %						
_	Characteristic axial stre flexural strengt	ength at 5% fractile, f_f = th of concrete, f_{fl} = [1+(N/mm2 N/mm2	<= 2f _f		
		effective depth critical perimeter $u_i = k_1 = 1 + k_2 = 1 + k_3 = 1 + k_4 = 1 + k_4 = 1 + k_5 = 1 + k_5$			mm (assu	me p = p _{min} = hichever les	•	
	Punching shear capacity, Hence,	$v_{c} = 0.035k_{1}^{3/2}(f_{c}')^{1/2} +$ slab load capacity, F		0.702 170	N/mm2 kN	> all point lo	oads	OK!

C30

and a fibre dosage rate of

The design is OK!

Hence, For a slab thickness of

150

STAHLCON HE 0.75/60

mm, concrete grade